# Calculus for the Biological Sciences

#### **Exponential Functions**

Ahmed Kaffel,

(ahmed.kaffel@marquette.edu)
Department of Mathematics and Statistics

Marquette University San Milwaukee, WI 53233

Fall 2020

# **Exponential Functions**

| Year       | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Population | 2.020 | 2.093 | 2.168 | 2.246 | 2.327 | 2.411 | 2.498 |

Table: The population (in millions) of Nevada 2000–2006.

#### Review questions:

• Is this population function increasing?

| Year       | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Population | 2.020 | 2.093 | 2.168 | 2.246 | 2.327 | 2.411 | 2.498 |

Table: The population (in millions) of Nevada 2000–2006.

#### Review questions:

- Is this population function increasing?
- Is this population a linear function?

| Year       | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Population | 2.020 | 2.093 | 2.168 | 2.246 | 2.327 | 2.411 | 2.498 |

Table: The population (in millions) of Nevada 2000–2006.

#### Review questions:

- Is this population function increasing?
- Is this population a linear function?
- Is this population a concave up or concave down function? Why?

| Year       | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Population | 2.020 | 2.093 | 2.168 | 2.246 | 2.327 | 2.411 | 2.498 |

Table: The population (in millions) of Nevada 2000–2006.

#### Review questions:

- Is this population function increasing?
- Is this population a linear function?
- Is this population a concave up or concave down function? Why?
- Find the relative change for each year between 2000 and 2003.

| Year       | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Population | 2.020 | 2.093 | 2.168 | 2.246 | 2.327 | 2.411 | 2.498 |

Table: The population (in millions) of Nevada 2000–2006.

 Population grew by about 3.6% between 2000–2001, 2001–2002, 2002–2003

| Year       | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Population | 2.020 | 2.093 | 2.168 | 2.246 | 2.327 | 2.411 | 2.498 |

Table: The population (in millions) of Nevada 2000–2006.

- Population grew by about 3.6% between 2000–2001, 2001–2002, 2002–2003
- Rule: Whenever we have constant percent increase, we have an exponential growth.

| Year       | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Population | 2.020 | 2.093 | 2.168 | 2.246 | 2.327 | 2.411 | 2.498 |

Table: The population (in millions) of Nevada 2000–2006.

- Population grew by about 3.6% between 2000–2001, 2001–2002, 2002–2003
- Rule: Whenever we have constant percent increase, we have an exponential growth.
- Let *t* be the number of years since 2000, then the population is given by

$$P = 2.020(1.036)^t.$$

| Year       | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Population | 2.020 | 2.093 | 2.168 | 2.246 | 2.327 | 2.411 | 2.498 |

Table: The population (in millions) of Nevada 2000–2006.

- Population grew by about 3.6% between 2000–2001, 2001–2002, 2002–2003
- Rule: Whenever we have constant percent increase, we have an exponential growth.
- Let *t* be the number of years since 2000, then the population is given by

$$P = 2.020(1.036)^t$$
.

• The population is an **exponential function** (with respect to *t*).



| Year       | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------|-------|-------|-------|-------|-------|-------|-------|
| Population | 2.020 | 2.093 | 2.168 | 2.246 | 2.327 | 2.411 | 2.498 |

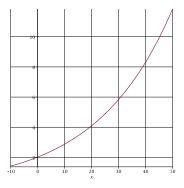
Table: The population (in millions) of Nevada 2000–2006.

- Population grew by about 3.6% between 2000–2001, 2001–2002, 2002–2003
- Rule: Whenever we have constant percent increase, we have an exponential growth.
- Let *t* be the number of years since 2000, then the population is given by

$$P = 2.020(1.036)^t$$
.

- The population is an **exponential function** (with respect to t).
- 1.036 represents the factor by which the population grows each year. It is called the **growth factor**.

Assuming that the formula holds for 50 years (since 2000).



**Problem 1.** When a patient is given medication, the drug enters the bloodstream. The rate at which the drug is metabolized and eliminated depends on the particular drug. For the antibiotic ampicillin, approximately 40% of the drug eliminated every hour. A typical dose of ampicillin is 250 mg. Suppose Q = f(t), where Q is the quantity of ampicillin, in mg, in the bloodstream at time t hours since the drug was given. Find several initial values of f(t).

• f(0) = 250

- f(0) = 250
- f(1) = 250(0.6) = 150

- f(0) = 250
- f(1) = 250(0.6) = 150
- $f(2) = 250(0.6)(0.6) = 250(0.6)^2 = 90$

- f(0) = 250
- f(1) = 250(0.6) = 150
- $f(2) = 250(0.6)(0.6) = 250(0.6)^2 = 90$
- $f(3) = 250(0.6)^2(0.6) = 250(0.6)^3 = 54$

• 
$$f(0) = 250$$

• 
$$f(1) = 250(0.6) = 150$$

• 
$$f(2) = 250(0.6)(0.6) = 250(0.6)^2 = 90$$

• 
$$f(3) = 250(0.6)^2(0.6) = 250(0.6)^3 = 54$$

• 
$$f(4) = 32.4$$

• 
$$f(0) = 250$$

• 
$$f(1) = 250(0.6) = 150$$

• 
$$f(2) = 250(0.6)(0.6) = 250(0.6)^2 = 90$$

• 
$$f(3) = 250(0.6)^2(0.6) = 250(0.6)^3 = 54$$

• 
$$f(4) = 32.4$$

• 
$$f(5) = 19.4$$



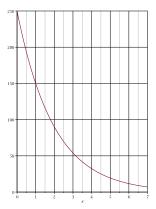
• Is this linear? Increasing? Decreasing? Concave up? Concave down?

- Is this linear? Increasing? Decreasing? Concave up? Concave down?
- Find the formula of Q = f(t).

• 
$$Q = f(t) = 250(0.6)^t$$

- $Q = f(t) = 250(0.6)^t$
- This function is called an **exponential decay function**.

- $Q = f(t) = 250(0.6)^t$
- This function is called an **exponential decay function**.



#### Definition

We say that P is an exponential function of t with base a if

$$P = P_0 a^t$$
.

•  $P_0$  is the **initial quantity**.

#### Definition

$$P=P_0a^t$$
.

- $P_0$  is the **initial quantity**.
- a is the factor by which P changes when t increase by 1.

#### Definition

$$P = P_0 a^t$$
.

- $P_0$  is the **initial quantity**.
- a is the factor by which P changes when t increase by 1.
- If a > 1, we have an **exponential growth**.

#### Definition

$$P=P_0a^t$$
.

- $P_0$  is the **initial quantity**.
- a is the factor by which P changes when t increase by 1.
- If a > 1, we have an **exponential growth**.
- If 0 < a < 1, we have an exponential decay.

#### Definition

$$P=P_0a^t$$
.

- $P_0$  is the **initial quantity**.
- a is the factor by which P changes when t increase by 1.
- If a > 1, we have an **exponential growth**.
- If 0 < a < 1, we have an exponential decay.
- a = 1 + r, where r is the decimal representation of the percent rate of change.

## Comparison between Linear and Exponential Functions

#### Definition

• A linear function has a constant rate of change.

## Comparison between Linear and Exponential Functions

#### Definition

- A linear function has a constant rate of change.
- An exponential function has a constant percent rate of change (relative rate of change).

**Problem 2.** A quantity can change rapidly. Suppose the initial value is 100. Find the formula for the quantity Q at the time t minutes later if Q is:

• Increasing by 3 per minute.

**Problem 2.** A quantity can change rapidly. Suppose the initial value is 100. Find the formula for the quantity Q at the time t minutes later if Q is:

- Increasing by 3 per minute.
- Decreasing by 7 per minute.

**Problem 2.** A quantity can change rapidly. Suppose the initial value is 100. Find the formula for the quantity Q at the time t minutes later if Q is:

- Increasing by 3 per minute.
- Decreasing by 7 per minute.
- Increasing by 4% per minute.

**Problem 2.** A quantity can change rapidly. Suppose the initial value is 100. Find the formula for the quantity Q at the time t minutes later if Q is:

- Increasing by 3 per minute.
- Decreasing by 7 per minute.
- Increasing by 4% per minute.
- Decreasing by 6% per minute.

**Problem 3.** Sales at the stores of company A increase from \$2503 millions in 1990 to \$3699 millions in 1996. Assuming the sales have been increasing exponentially, find the equation of the sale function P with respect to t := the number of years since 1990.

$$P = P_0 a^t$$

**Problem 3.** Sales at the stores of company A increase from \$2503 millions in 1990 to \$3699 millions in 1996. Assuming the sales have been increasing exponentially, find the equation of the sale function P with respect to t := the number of years since 1990.

•

$$P = P_0 a^t$$

$$P_0 = 2503$$

**Problem 3.** Sales at the stores of company A increase from \$2503 millions in 1990 to \$3699 millions in 1996. Assuming the sales have been increasing exponentially, find the equation of the sale function P with respect to t := the number of years since 1990.

•

$$P = P_0 a^t$$

•

$$P_0 = 2503$$

$$a^6 = 1.478$$

**Problem 3.** Sales at the stores of company A increase from \$2503 millions in 1990 to \$3699 millions in 1996. Assuming the sales have been increasing exponentially, find the equation of the sale function P with respect to t := the number of years since 1990.

•

$$P = P_0 a^t$$

•

$$P_0 = 2503$$

0

$$a^6 = 1.478$$

$$a = 1.07$$

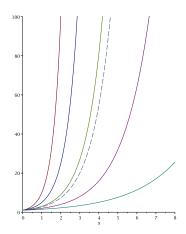
## Recognizing Data

#### Definition

The values of t and P in a table could from an exponential function  $P = P_0 a^t$  if ratios of P values are constant for equally spaced t values.

| X | f(x) | Χ | g(x) | Х | h(x) |
|---|------|---|------|---|------|
| 0 | 16   | 0 | 14   | 0 | 5.3  |
| 1 | 24   | 1 | 20   | 1 | 6.5  |
| 2 | 36   | 2 | 24   | 2 | 7.7  |
| 3 | 54   | 3 | 29   | 3 | 8.9  |
| 4 | 81   | 4 | 35   | 4 | 10.1 |
|   |      |   | I    |   | •    |

# Families of exponential functions



# Families of exponential functions

